W yamada

High Performance Air Operated
Piston Pumps

https://ap.yamadacorp.co.jp/

The Yamada Piston Pump Series was designed with a wide variety of applications in mind.

Therefore when selecting the correct pump, many factors must be first taken into account.

The pump's materials of construction, the size and ratio of the air motor, the material to be pumped, chemical compatibility, viscosity and density. Also the conditions effecting the pump and piping system. For example, what is the height, length and diameter of the pipe. What are the inlet and outlet pressures and the required output volume?

The entire Yamada Piston Pump Series is classified in the general below table. While also taking into account the above conditions, use this chart when selecting your pump.

For more information please contact your nearest Yamada Pump Dealer or Yamada Corporation directly.

Inline Pumps. (Steel)

For lubricants similar to engine oils, gear oils and machine oils etc. Generally the material must provide a certain amount of lubrication, be non-corrosive and have a low viscosity. <Ex.> Engine oil, Gear oil, Machine oil, etc.

Divorced Pumps. (Steel)

LOW PRESSURE SUPPLY PUMPS

For fluids that are air-drying like paints and certain chemical solutions. The material must provide a certain amount of lubrication, be non-corrosive and have a low viscosity. Different packing materials may be required depending on the application. <Ex.> Paint, Chemical solution, etc.

Inline Stainless Steel Pumps.

For fluids similar to water and cutting oils etc that have a low viscosity, are corrosive and non air-drying. <Ex.> Water, Cutting oil, etc.

Divorced Stainless Steel Pumps.

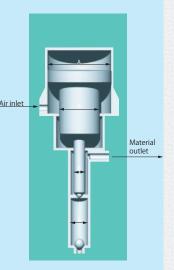
For fluids like chemical agents and acids etc, that are corrosive and air-drying. Teflon packing is used in these pumps. *
<Ex.> Chemical agents, etc.

*PTFE packing is used.

Inline Pumps.

HIGH PRESSURE SUPPLY PUMPS

Used for high viscosity materials like grease and putty. The material must provide a certain amount of lubrication and be non-corrosive. <Ex.> Grease

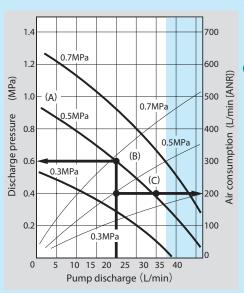

Divorced Pumps.

Pump Ratio

The pump ratio is the ratio between the effective areas of the air motor (A) and of the lower pump (B). Where the area (B) is usually indicated as the base (i.e., as 1). For example when A is 100cm^2 and B is 20cm^2 the pump ratio would be 100:20 or 5 times 1, (=5:1). This ratio is one of the most important factors determining pump characteristics.

The maximum (theoretical) outlet discharge pressure can be calculated by multiplying the pump ratio by the supplied air pressure. For example if the above pump with a 5:1 ratio is used with an air supply of 0.7 Mpa, then the maximum discharge pressure would be 3.5Mpa, (=. 7 times 5). By using pumps with different pump ratios even with the same inlet air pressure it is possible to achieve low to extremely high discharge pressure.

The Yamada line up of Air PoweredTM Pumps covers all ranges of pump ratio from a 1:1 to 60:1. Therefore from the same 0.7Mpa air supply, it's possible to achieve up to 42Mpa of outlet pressure. In general the pump required often depends on the viscosity of the material. To pump very high viscosity materials, a pump with a high pump ratio is required.



Performance Curve

As explained above, you can get the maximum theoretical discharge pressure by multiplying the supplied air pressure by the pump ratio. The higher the discharge pressure the smaller the pump discharge will be under the same supplied air pressure. For this reason the pump with a bigger air motor will be required as the required discharge pressure becomes higher. The air poweredTM pumps have characteristics that the discharge pressure will decrease as the pump discharge increase.

Putting all these factors together, the correlations between the supplied air pressure, the discharge pressure and the pump discharge are plotted for each pump. Their relations with the air consumption are also included in the plot. The plot is termed the performance curve, and this will provide you with the pump performance in general.

How to use the performance curve

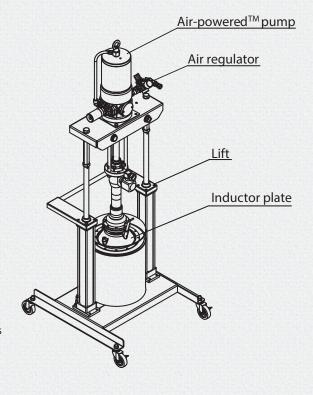
- Three down-sloping curves indicate the relation between the discharge pressure and the pump discharge for the supplied air pressure of 0.3, 0.5 and 0.7MPa. Choose one of the curves that corresponds to your supplied air pressure.
- **b** Let assume here that the supplied air pressure is 0.5MPa. Then, the middle curve is used in the example
 - When the pump discharge is 0 L/min (i.e., when the outlet valve is closed), the discharge pressure (pumps inner pressure) is maximum as shown at point (A).
 - As the outlet valve is opened, the material starts flowing out, and the discharge pressure slowly falls down. The discharge pressure will be 0.6MPa when the pump discharge reaches 20 L/min (point B.)
 - A further increase in the pump discharge to 30L/min will lower the discharge pressure to 0.4MPa (point C.)

By referring to this figure, it is possible to see if a particular pump can provide the required pump discharge and discharge pressure. If the required pump discharge of a particular pump falls into the blue zone in the figure, then the pump is not suitable for the continuous operation. If the is the case, please choose the pump with bigger capability.

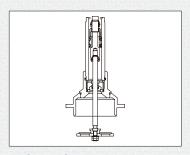
C These curves also show the air consumption for the supplied air supply pressure of 0.3MPa, 0.5MPa and 0.7MPa. As you can see, the air consumption is 200L.min when the supplied air pressure is 0.5MPa and the pump discharge is 20L/min (point C.)

Construction and Features

■ AIR POWERED[™] pump

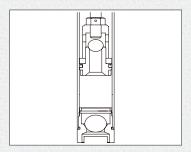

The Yamada reciprocating pump series is comprised of pumps with air motors ranging from 50 to 250MPa in size, and ratios from 1to1up to 55to1.

AIR REGULATOR


An air regulator is used to control the air pressure supplied to the pump.

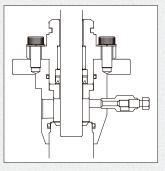
Lift

A pump fitted with an airlift is designed so that it can be raised using compressed air enabling the material container to be replaced with ease. The second type of airlift (air ram type) is designed especially for high viscosity materials and as well as being able to raise the pump are also able to forcefully press down on the material to help with feeding.



SUCTION TYPE

Shovel type

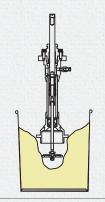

Shovel type pumps are designed to supply highly viscose and semisolid materials. The pumps shovel, scrapes up material and sends it into the foot valve for delivery. High viscosity material pumps of this kind include both double and single action types. Single action types scrape up the material on the up stroke and deliver it on the down stroke.

•Ball type

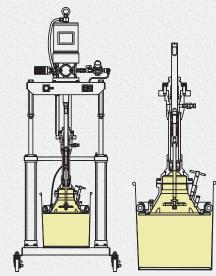
Ball type pumps are especially designed to pressure feed low viscosity fluids. The foot valve has a large ball that is designed to deliver a large volume at full power. The most common ball type valve is a double action type that pumps fluid on both the up and down strokes. High viscosity airless supply pumps and oil supply pumps fall into this category.

GLAND SEAL TYPE

Packing seal Type


This type of pump is suitable for paint and grease. Rubber packing is used in the gland seal section.

INDUCTOR PLATE

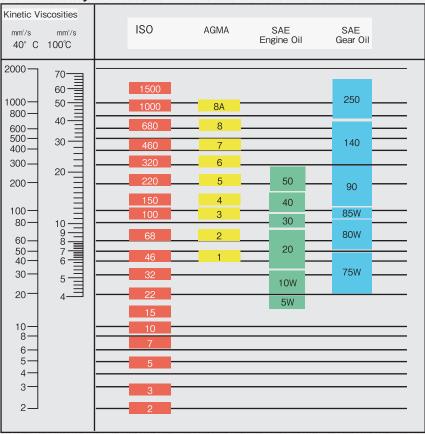

Some Yamada Pumps are fitted with an inductorplate.

Semi solid and highly viscous materials are of a nature that they adhere to the inner wall of their container. They also tend to make acavity around the pump inlet and generally cannot be pumped smoothly. When using an inductorplate it sticks to the surface of the grease and an airtight seal is created. When the pump is operating a vacuum is formed inside the material container and thus pulls the inductorplate down. As the grease level decreases the plate will also move down the inside of the container. This action is combined with either downward pressure from the weight of the pump or if required by using a ram inductor to force the material down. These 3 forces (vacuum, weight or force) constantly push the material up to the pump inlet, and t hus facilitate the transfer of material effectively.

The airtight seal also prevents contaminants or dampness from entering the drum as well as enabling the total use of the containers contents preventing wastage.

If the pump is not equipped with the inductor plate, highly viscous material tends to form cavities around the foot valve and it will not be sucked out of the container.

Standards of Grease


Spray Manual/Pump Air/Pump Pressure supply pump

Consistency of Grease

NLGI No	. JIS No.	ASTM Consistency (25°C and 60W)	Appearance	Su	pplyin	g metl	nod
№ 000	000	445~475	Semi-fluid				
№ 00	00	400~430	"				
Nº 0	0	355~385	Semi-fluid or Soft				
Nº 1	1	310~340	Soft				
Nº 2	2	265~295	Standard				
№ 3	3	220~250	Standard				
Nº 4	4	175~205	Semi-firm				
№ 5	5	130~160	firm	Pleas	se Cons	sult Ya	mada.
Nº 6	6	85~115	Solid				

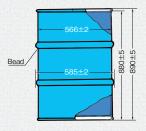
Viscosity

Oil Grade Systems

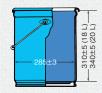
Reference

Material	Viscosity at 20℃ (CPS)	Material	Viscosity at 20℃ (CPS)
Water	1	Gear oil	2200~30000
Turpentine	1	Syrup (Thin)	2500
Sulfuric acid	2	Syrup (Thick)	3200
Milk	3	Maximum viscosity of self-suction	n limit
Light oil, Kerosene	4	Grease (#0)	20000※
Ethylene glycol	16	Grease (#1)	30000※
Crude oil	28	Mayonnaise	60000
Boiled oil	64	Vaseline	64000
Motor oil SAE20	125	Grease (#2)	70000※
Motor oil SAE30	200	Mustard	70000
Castor oil	240	Grease (#3)	100000%
Motor oil SAE40	319	Tomato paste	190000
Gear oil 80	240~1900	Peanut butter	250000
Gear oil 90	590~5100		

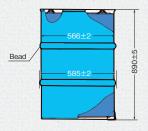
*This number is apparent viscosity.



Unit

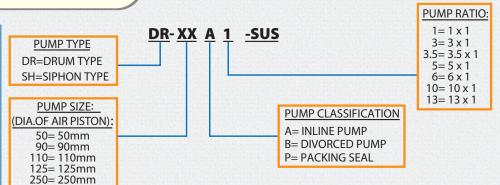

Unit	Old Unit		SI Unit	Remark
Pressure	1kgf/cm² 10kgf/cm² 1kgf/cm²	→	0.1MPa. 1MPa. →100kPa. 100kPa.	
Volume	1L/min		1L/min. 1mL/min.	1000L/min.→1m³/min. 1000cc→1L
Weight	1kg → 1g →		1kg 1g	1000kg→1t 1000g→1kg
Viscosity	1cP → 1P →		1mPa·s 0.1Pa·s	10P (1000cPs) →1Pa·s
Kinetic Viscosity	1cSt	→	1mm²/s	
Torgue	100kg ⋅ cm	→	10Nm	
Noise	1phon	→	1 db	
Frequency	1 Cycle	→	1Hz	

Standard Size of Containers

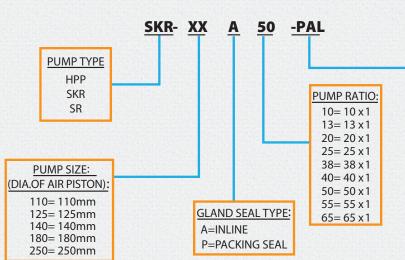

Open Head Drum JIS Z1600 (200 L)

Open Head Straight Pail JIS Z1620

Tight Head Drum JIS Z1601 (200 L)



Open Head Taperd Pail JIS Z1620



Model Indicator

LOW **PRESSURE SUPPLY PUMPS**

HIGH **PRESSURE SUPPLY PUMPS**

LIFT TYPE:

PAL: Air Ram Single Post Lift for Pail PW AL: Air Ram Double Post Lift for Pail AL: Air Single Lift for Drum DAL: Air Ram Single Post Lift for Drum

DW AL: Air Ram Double Post Lift for Drum

REMARKS

SUITABLE MATERIAL FOR USE

NLGI No.0 Grease

Oils

NLGI No.1 Grease

Solvents such as thinner

NLGI No.2 Grease

NLGI No.3 Grease

Chemicals

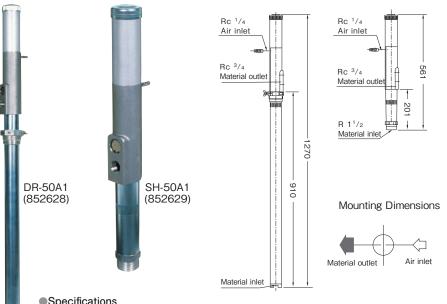
High viscosity material such as adhesive and sealant

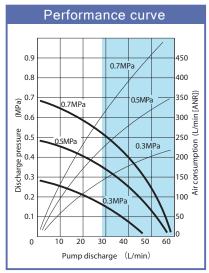
200L (180KGS)Drum

18L (18KGS) Pail

SUITABLE CONTAINER

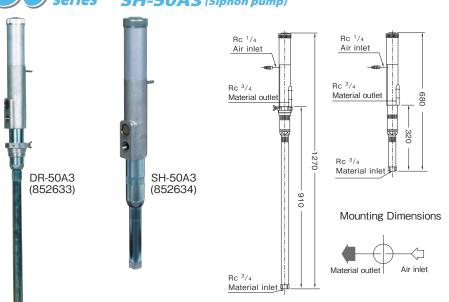
LOW PRESSURE SUPPLY PUMPS

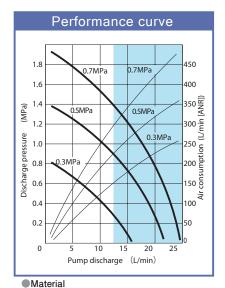

Low Pressure Supply Pumps


Inline Pump 1×1 ratio

DR-50A1 (Drum pump) SH-50A 1 (Siphon pump)

Material Piston Packing Gland Packing Suction Tube STKM12B **NBR** NBR

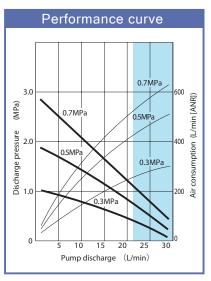

Opecinicat	10113									
Model No.	Madal	Ratio	Po	ort	Air Inlet	Air Supply	Temp. I	Range (°C)	Stroke	Weight
woder No.	Model	Hallo	Intake	Discharge	Port	Pressure(MPa)	Ambient	Material	(mm)	(kg)
852628	DR-50A1	1×1	_	Rc3/4	Rc1/4 w/PS-20PM	0.3~0.7	0~60	0~80	70	5.0
852629	SH-50A1	1×1	R1-1/2	Rc3/4	Air Coupler	0.3~0.7	0~60	0~80	70	2.6


Inline Pump 3×1 ratio

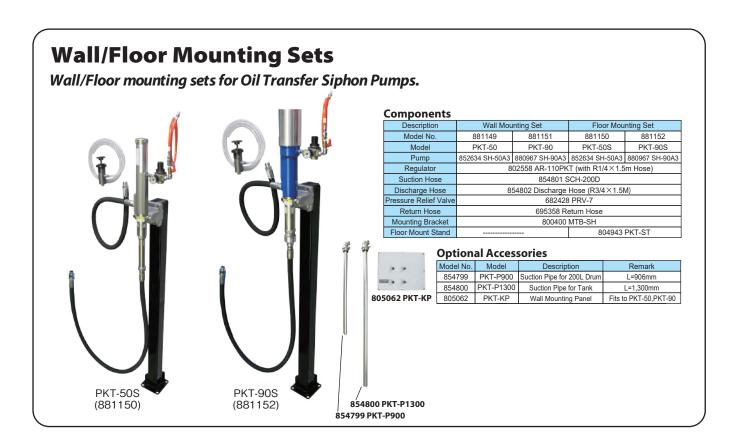
DR-50A3 (Drum pump) SH-50A3 (Siphon pump)

Suction Tube Piston Packing Gland Packing

Specificat	ions

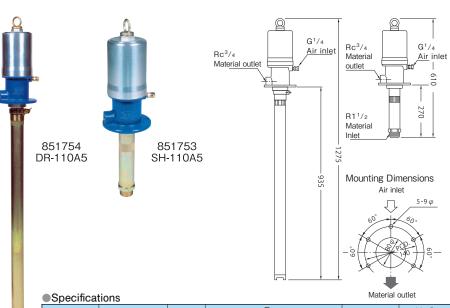

Specificat	ions	STKM12B NBR		NBR						
Madal Na	Madal	Ratio	Port		Air Inlet	Air Supply	Temp. Range (℃)		Stroke	Weight
wiodei No.	lodel No. Model		Intake	Discharge	Port	Pressure(MPa)	Ambient	Material	(mm)	(kg)
852633	DR-50A3	3×1	Rc3/4	Rc3/4	Rc1/4 w/PS-20PM	0.3~0.7	0~60	0~80	70	5.4
852634	SH-50A3	3×1	Rc3/4	Rc3/4	Air Coupler	0.3~0.7	0~60	0~80	70	3.3

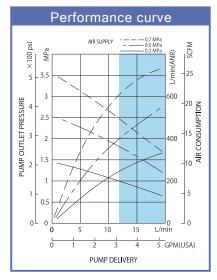
Inline Pump 3×1 ratio



Material		
Suction Tube	Piston Packing	Gland Packing
STKM12B	NBR	NBR

	- Opcomout	10110									
	Model No.	Model	Ratio	Port		Air Inlet Air Supply Port Pressure(MPa)	Temp. F	Range (°C)	Stroke	Weight	
woder no.	Model	Hallo	Intake	Discharge	Pressure(MPa)		Ambient	Material	(mm)	(kg)	
	880966	DR-90A3	3×1	_	Rc3/4	Rc1/4 w/PS-20PM	0.3~0.7	0~60	0~80	70	7.1
	880967	SH-90A3	3×1	R1-1/2	Rc3/4	Air Coupler	0.3~0.7	0~60	0~80	70	4.5

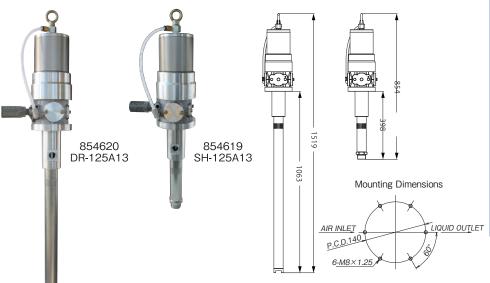

Low Pressure Supply Pumps

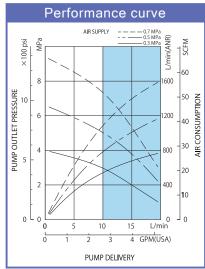

Inline Pump 5×1 ratio

DR-110A5 (Drum pump) SH-110A5 (Siphon pump)

Material
Suction Tube Piston Packing Gland Packing
STKM12B NBR NBR

	Specificat	110113									
	Madal Na	Model	Ratio	Po	Port		Air Supply	Temp.	Range (°C)	Stroke	Weight
Model No.	Model	Hallo	Intake	Discharge	Port	Pressure(MPa)	Ambient	Material	(mm)	(kg)	
	851754	DR-110A5	5×1	_	Rc3/4	G1/4	0.2~0.7	0~60	0~80	60	12.0
	851753	SH-110A5	5×1	R1-1/2	Rc3/4	G1/4	0.2~0.7	0~60	0~80	60	8.3


Inline Pump 13×1 ratio



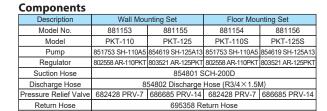
Gland Packing

DR-125A 13 (Drum pump)
SH-125A 13 (Siphon pump)

Material

STKM12B

Suction Tube Piston Packing


Special cowhide

Specifica	Specifications											
Model No.	Model	Ratio	Po	ort	Air Inlet	Air Supply	Temp. I	Range (°C)	Stroke	Weight		
	Wodei	nalio	Intake	Discharge	Port	Pressure(MPa)	Ambient	Material	(mm)	(kg)		
854620	DR-125A13	13×1	-	Rc3/4	Rc3/8	0.2~0.7	0~60	0~80	100	21.2		
854619	SH-125A13	13×1	R1-1/2	Rc3/4	HC3/6	0.2~0.7	0~60	0~80	100	17.6		

Wall/Floor Mounting Sets

Wall/Floor mounting sets for Oil Transfer Siphon Pumps.

Mounting Bracket

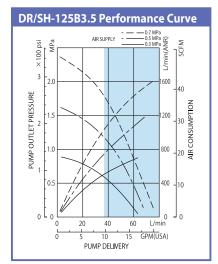
Floor Mount Stand

Model No. Model Description Remark 854799 PKT-P900 Suction Pipe for 200L Drum 854800 PKT-P1300 Suction Pipe for Tank L=1,300mm **805062 PKT-KP** 805062 PKT-KP Wall Mounting Panel Fits to PKT-110,PKT-125

800400 MTB-SH

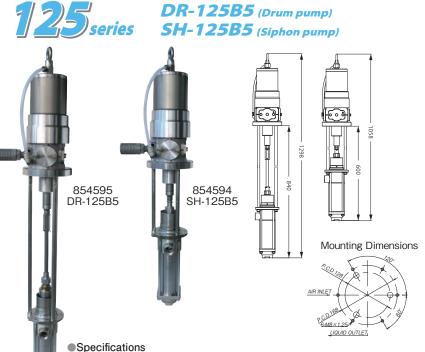
804943 PKT-ST

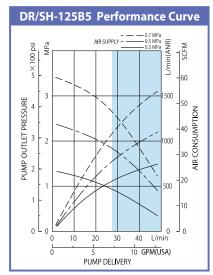
Optional Accessories


854799 PKT-P900

Low Pressure Supply Pumps

Divorced Pump 3.5×1 ratio


Material

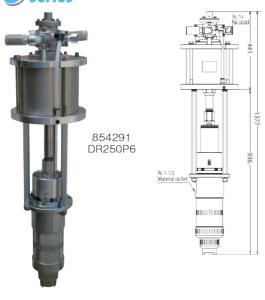

		Suction Tube	Piston Packing	Gland Packing
Standard Mod	el	STKM12B	Special cowhide	NBR
"V" Model		STKM12B	Special cowhide	Special cowhide

Specificat	tions										
Model No.	Model	Madal	Datie	Po	ort	Air Inlet	Air Supply	Temp.	Range (°C)	Stroke	Weight
		Ratio	Intake	Discharge	Port	Pressure(MPa)	Ambient	Material	(mm)	(kg)	
854593	DR-125B3.5	3.5×1	0.534	Rc1-1/2	Dod	Do2/0	0.2~0.7	0~60	0~80	100	30.5
854592	SH-125B3.5		HC1-1/2	Rc1	Rc3/8	0.2~0.7	0~60	0~80	100	28.9	
854599	DR-125B3.5V	2571	3.5×1	Do1 1/0	Do1	Do2/9	0.2~0.7	0~60	00.00	100	30.5
854598	SH-125B3.5V	3.5 ^ 1	(1 Rc1-1/2	Rc1	Rc3/8	0.2~0.7	0~60	0~80	100	28.9	

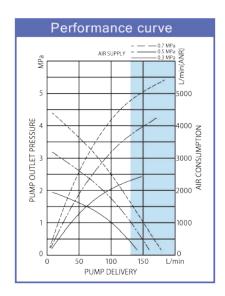
Divorced Pump 5×1 ratio

Material

	Suction Tube	Piston Packing	Gland Packing
Standard Model	STKM12B	Special cowhide	NBR
"V" Model	STKM12B	Special cowhide	Special cowhide


Madal Na	Model	Ratio	Port		Air Inlet	Air Supply	Temp. Range (℃)		Stroke	Weight
Model No.	Model	Hallo	Intake	Discharge	Port	Pressure(MPa)	Ambient	Material	(mm)	(kg)
854595	DR-125B5	5×1	Do1 1 /0	Dod	Do2/0	0.2~0.7	0~60	000	100	28.9
854594	SH-125B5	5 × 1	Rc1-1/2	Rc1	Rc3/8	0.2~0.7	0~60	0~80	100	27.3
854601	DR-125B5V	5×1	Rc1-1/2	Rc1	Rc3/8	0.2~0.7	0~60	0~80	100	28.8
854600	SH-125B5V	3/1	NC1-1/2	ncı	nC3/6	0.2.30.7	0, 000	0.280	100	27.2

Divorced Pump 6x1 ratio



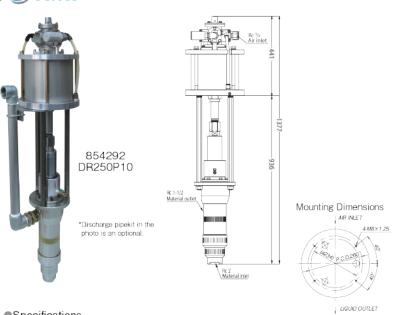
DR-250P6 (Drum pump)

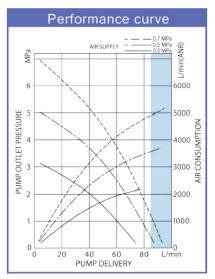
Gland Packing Suction Tube Piston Packing STKM12B NBR **NBR**

Specifications

Madel No	Madal	Datio		Port Air Inlet		Air Supply	Temp. I	Stroke Weight		
Model No.	Model F	Hatto	Intake	Discharge	Port	Pressure(MPa)	Ambient	Material	(mm)	(kg)
854291	DR-250P6	6×1	Rc2	Rc1-1/2	Rc3/4	0.2~0.7	0~70	0~80	100	78

Divorced Pump 10x1 ratio

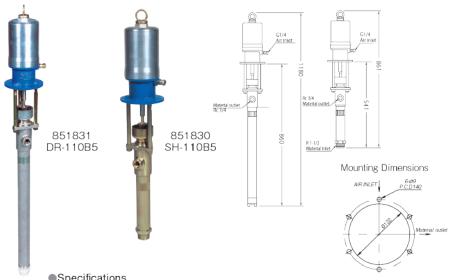


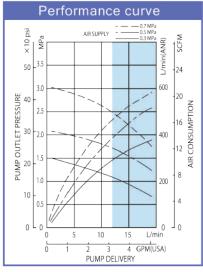


DR-250P10 (Drum pump)

Material Suction Tube Piston Packing Gland Packing STKM12B Special cowhide

Model No.	Model	Model Ratio Port Air Inlet Intake Discharge Port	Air Supply	Temp. Range (℃)		Stroke Weight					
	Model		Intake	Discharge	Port	Pressure(MPa)	Ambient	Material	(mm)	(kg)	
	854292	DR-250P10	10×1	Rc2	Rc1-1/2	Rc3/4	0.2~0.7	0~70	0~80	100	75


Low Pressure Supply Pumps


Divorced Pump 5x1 ratio

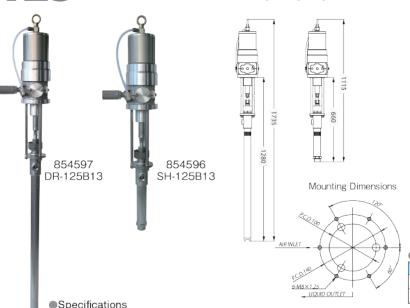
110 series

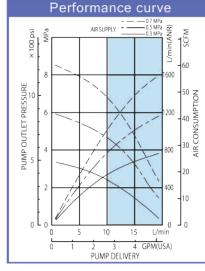
DR-110B5 (Drum pump) SH-110B5 (Siphon pump)

Material
Suction Tube Piston Packing Gland Packing
STKM12B Special cowhide Special cowhide

#Opecinications										
Model No.	Model	Detie	Po	ort	Air Inlet	Air Supply	Temp. Range (℃)		Stroke Wei	
Model No.	Model	Ratio	Intake	Discharge	Port	Pressure(MPa)	Ambient	Material	(mm)	(kg)
855261	DR-110B5	5×1	_	Rc3/4	G1/4	0.3~0.7	0~60	0~80	60	17.0
855260	SH-110B5	5×1	R1-1/2	Rc3/4	0174	0.3~0.7	0~60	0~80	60	12.0

Divorced Circulation Pump 13x1 ratio

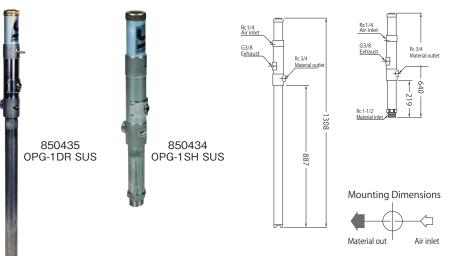


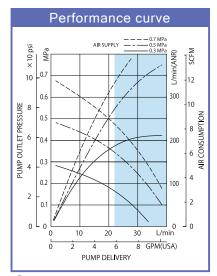


DR-125B13 (Drum pump) SH-125B13 (Siphon pump)

 Material
 Suction Tube
 Piston Packing
 Gland Packing

 Standard Model
 STKM12B
 Special cowhide
 NBR


 "V" Model
 STKM12B
 Special cowhide
 Special cowhide

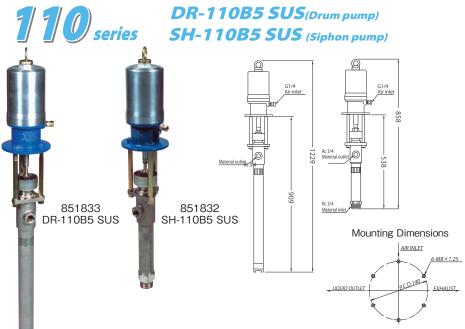

Model No.	Madel	Detie	Po	ort	Air Inlet	Air Supply	Temp.	Range (℃)	Stroke	Weight
Model No.	Model	Ratio	Intake	Discharge	Port	Pressure(MPa)	Ambient	Material	(mm)	(kg)
855263	DR-125B13	10 × 1		Rc3/4	De2/0	0.00.7	0~60	0~80	100	26.0
855262	SH-125B13	13×1	R1-1/2	RC3/4	Rc3/8	0.2~0.7	0~60	0~80	100	22.6

Inline Stainless Steel Pump 1×1 ratio

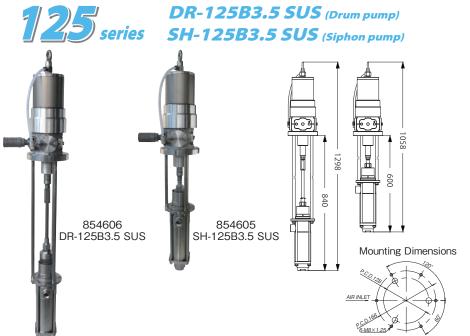
 Suction Tube
 Piston Packing
 Gland Packing

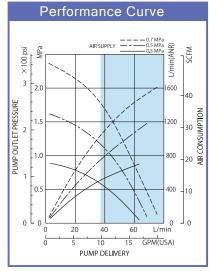
 SUS304
 PTFE
 PTFE,FKM

Specificat	tions					L	SUS304	PTFE	PTFE,	,FKM
Model No.	Model	Ratio Port Air Inlet Ai	Air Supply	Temp. I	Range (°C) Stroke		Weight			
woder no.	Model	Hallo	Intake	Discharge	Port	Pressure(MPa)	Ambient	Material	(mm)	(kg)
850435	OPG-1DR SUS	1×1	-	Rc3/4	Bc1/4	0.3~0.7	0~60	0~80	89	9.1
850434	OPG-1SH SUS	1×1	Rc1-1/2	Rc3/4	nC1/4	0.3~0.7	0~60	0~80	89	7.0


Divorced Stainless Steel Pump 5×1 ratio

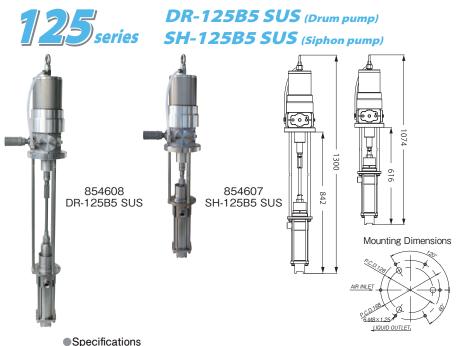
 Suction Tube
 Piston Packing
 Gland Packing

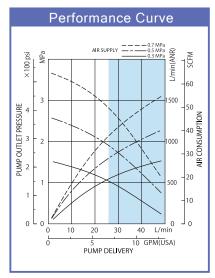

 SUS304
 PTFE (Glass-filter multiproted)
 PTFE (Glass-filter multiproted)


Specificat	tions		L		(diaso liber relationed)	(GIGGO IIDGI	reidiciocoy			
Madal Na	Madal	Dotio	Po	ort	Air Inlet	Air Inlet		Temp. Range (℃)		Weight
Model No. Model	Model	Ratio	Intake	Discharge	Port	Pressure(MPa)	Ambient	Material	(mm)	(kg)
851833	DR-110B5 SUS	5×1	_	Rc3/4	G1/4	0.2~0.7	0~60	0~80	60	16.0
851832	SH-110B5 SUS	5×1	Rc1-1/2	Rc3/4	G1/4	0.2~0.7	0~60	0~80	60	15.0

Low Pressure Supply Pumps

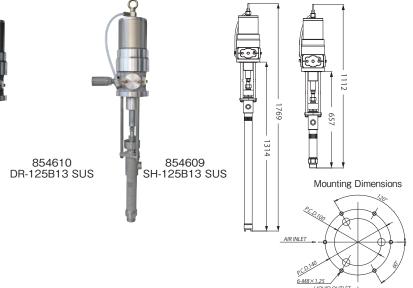
Divorced Stainless Steel Pump 3.5×1 ratio

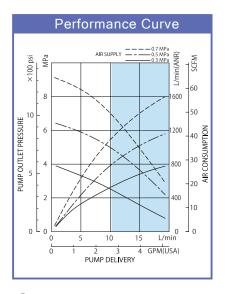



Material
Suction Tube Piston Packing Gland Packing
SUS304 PIFE
Glasse flow reinfulroced) (Glasse flow reinfulroced)

'	Specification	tions				LIQUID COTLET	L	505304	(Glass-fiber reiuforced)	(Glass-fiber	reiuforced)
	Model No.	Model	Model Ratio Port Air In	Air Inlet	Air Supply	Temp. Range (℃)		Stroke Weight			
	woder No.	Model	nalio	Intake	Discharge	Port	Pressure(MPa)	Ambient	Material	(mm)	(kg)
	854606	DR-125B3.5 SUS	3.5×1	Rc1-1/2	Rc3/4	Rc3/8	0.2~0.7	0~60	0~80	100	30.0
	854605	SH-110B3.5 SUS	3.5×1	Rc1-1/2	Rc3/4	nc3/6	0.2~0.7	0~60	0~80	100	28.4

Divorced Stainless Steel Pump 5×1 ratio


Material
Suction Tube Piston Packing Gland Packing
SUS304 PTFE
Glisse-for endorced PTFE


Ореспіса								3 (00)		
Model No.	Model	Ratio	Po	rt	Air Inlet	Air Supply	Temp. I	Range (°C)	Stroke	Weight
wiodei ivo.	Model	nalio	Intake	Discharge	Port	Pressure(MPa)	Ambient	Material	(mm)	(kg)
854608	DR-125B5 SUS	5×1	Rc1-1/2	Rc3/4	Rc3/8	0.2~0.7	0~60	0~80	100	29.4
854607	SH-125B5 SUS	5×1	Rc1-1/2	Rc3/4	nc3/6	0.2~0.7	0~60	0~80	100	27.8

Divorced Stainless Steel Pump 13×1 ratio

Suction Tube Piston Packing Gland Packing
SUS304 PTFE (Glass-fiber relutioned) PTFE

Specificat	tions				LIQUID OUTLET	l	303304	(Glass-fiber reiuforced)	PI	IFE
Model No.	o. Model	Dotio	Port		Air Inlet	Air Supply	Temp. Range (℃)		Stroke	Weight
woder no.	iviodei	Ratio	Intake	Discharge	Port	Pressure(MPa)	Ambient	Material	(mm)	(kg)
854610	DR-125B13 SUS	13×1	_	Rc3/4	Rc3/8	0.2~0.7	0~60	0~80	100	25.5
854609	SH-125B13 SUS	13×1	Rc1-1/2	Rc3/4	nco/o	0.2~0.7	0~60	0~80	100	22.3

Low Pressure Supply Pumps

Accessories

803488, 802857, 802373

800400

850126

Bung adapter

Adapter for inline drum pump for mounting to bung hole (2") of 200L drum

Material: ADC12

Fits pump: DR-50A1, DR-90A3, DR-110A5

802857

Material: ADC12

Fits pump: DR-110A5, DR-90A3, DR-110A5

802373

Material: SUS304

Fits pump: OPG-1DR SUS, DR-125B13 SUS

800400 MTB-SH Mounting bracket

Bracket for inline siphon pump for mounting to the wall Material: ADC12, SPCC

Mounting holes: $4-\phi 11.5$ (W84mm x H100mm)

Fits pump: SH-50A1, SH-90A3, SH-110A5, SH-125A13

802553 AR-110A Air regulator

Adjustable range: 0.1 MPa to 1.0 MPa Inlet: G1/4" with PS-20PM Air Coupler Plug

Outlet: G1/4"

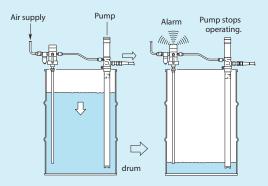
Fits pump: 90 and 110 series

850126 SCK-200D Suction Tube Hose Kit

Suction tube with bung adapter and hose (3/4"-1.8M) kit for siphon pumps for mounting to bung hole (2") of 200L drum

Tube material: STKM12B Hose material: NBR Connection: Rc1-1/2"

Liquid Level Alarm Series


Low Level Alarm

When the liquid level reaches a predetermined limit, this fully-pneumatic liquid level sensor shuts the air supply to the pumps automatically and it blows the whistle instead.

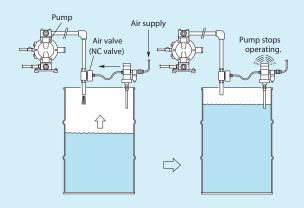
The Low level alarm can protect the pump from dry-running, and can prevent the mixing of bubbles into the material.

It can be mounted to the bung hole (3/4) of 200L drum directly.

Mateial of detecting tube: Brass

Specifications

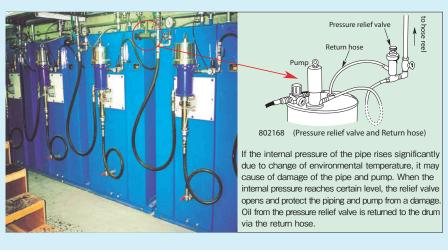
Model No.	480007
Model	SA-4100 Low level alarm
Туре	Lower limit detection
Air pressure	0.25~0.7MPa
Air consumption	Max. 1000 L/min (ANR) (at 0.5MPa load)
Max. viscosity	Less than 2.5Pas (2,500cPs)
Weight	2.2kg
Accessories	PS-20PM Air coupler


High Level Alarm

When the liquid level reaches a predetermined limit, this fully-pneumatic liquid level sensor shuts the air supply to the pumps automatically and it blows the whistle instead.

The high level alarm can prevent the overflow of drums and tanks.

It can be mounted to the bung hole (3/4) of 200L drum directly.


Mateial of detecting tube: Brass

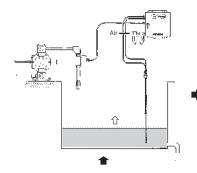
Specifications

- Specifications			
Model No.	480008		
Model	SA-4110 High level alarm		
Туре	Upper limit detection		
Air pressure	0.25~0.7MPa		
Air consumption	Max. 1000 L/min (ANR) (at 0.5MPa load)		
Max. viscosity Less than 2.5Pa's (2,500cPs			
Weight	2.2kg		
Accessories	PS-20PM Air coupler		

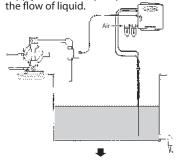
Pressure Relief Valve

Low Pressure Supply Pumps

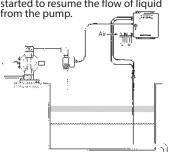
High-Low Level Controller

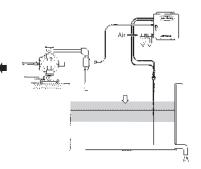

This unit is used to control the high and low levels of liquid being pumped into or out off a container.

This device in driven by compressed air and istherefore suitable for use in highly explosive environments.


The systems is also designed to work in many harsh environments, e.g. areas with high temperature, high humidity or even areas where there are high electromagnetic fields.

It can handle any liquid with a viscosity of less than 1000cps.


1. Liguid is pumped to raise the level in the tank.


2. When the liquid reaches the upper preset limit the controller stops the supply of air to the pump to shut off

2. When the liquid level reaches the lower preset level the air supply will be started to resume the flow of liquid from the pump.

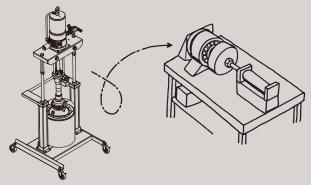
3. The liquid level becomes lower.

Model No.	del No. Model Supply Air Press. Output Air Flow		Viscosity Limit	Weight	
480005	SA-4150	0.3-0.7MPa	Max 300L/min	1Pa·s or less	6kg

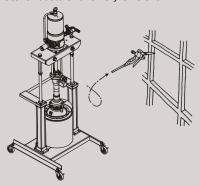
HIGH PRESSURE SUPPLY PUMPS

High Pressure Supply Pumps

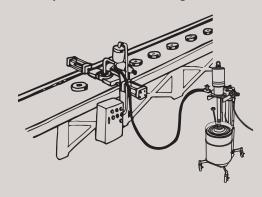
Applications


TUNNEL BUILDING

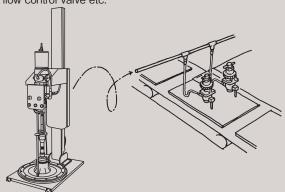
High-pressure supply pumps are driven by compressed air, not electricity and are therefore very safe. They are often used to lubricate the drive trains of vehicles or machines, and due to their high-pressure output are used for sealing or plugging of tunnel walls against water seepage.


Bearing grease applications

Using this system grease can be supplied from the pump usually through a special metering device directly into the bearing of a vehicle. A variety of systems and different guns and outlets are available.


(APPLICATION OF SEALER AND CAULKING)

By connecting a hose and flow gun to a portable high-pressure pump unit, a uniform and smooth delivery of material can be carried out efficiently at any location. This type of unit saves on time and material costs and is very efficient.


GREASE METERING

By using a pump unit fitted with a grease meter, it is possible to carryout accurate and efficient lubrication. Used for applications such as metering systems and bearing grease packers, they are commonly used in the manufacturing and vehicle industries.

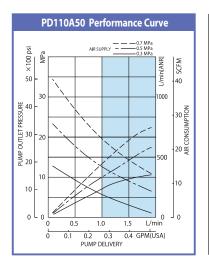
CENTRALIZED SEALER

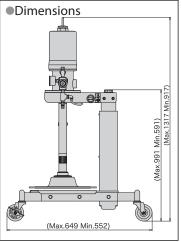
This type of pump can be used for adhesive and spot sealing applications and is often seen in mass production plants. Material can be piped to any point in the plant thus the entire plant space is used effectively. Often used in conjunction with a flow control valve etc.

Inline High Pressure Supply Pump Unit 50×1 ratio

SKR 110 A 50 PAL

The SKR110A50PAL is the successor model of SKR110M50SAL that is one of bestseller of Yamada.


Proven and reliable 110 series high performance Air-Powered® pump is fitted with inductor plate and pneumatic ram lift.


This is one of the most highly efficient and extremely versatile grease pump units for manufacturing line use.

Material outlet: G1/4

Air inlet: Rc1/4 with PS-20PM Air Coupler

- Successor model of SKR110M50SAL
- Proven and reliable 110 series Air-Powered® pump
- Low-profile pump lift
- Flat shaped base
- Complies with CE

Material

Piston Packing	Gland Packing	Inductor Plate Wiper
Polyurethane	Polyurethane	NBR (Flat type)

Madal Na	Model	0	Air Supply			Accession	Weight	
Model No.	Model	Container	Pressure (MPa)	Model	Ratio	Accessories	(kg)	
881122	SKR110A50PAL		Pail -18kg) 0.2-0.7		851728 PD110A50T	F0.V.1	804941 Regulator Assy	34.0
881123	SKR110A50PAL-SL (for silicon grease)			851999 PD110A50T-SL	50×1	(Including 680743 PS-20PM Air Coupler)···1	04.0	
881204	SKR110A50PAL-PL (with IDP-PAL/PL)	Pail		851728 PD110A50T		804941 Regulator Assy Regulator (Including 680743 PS-20PM Air Coupler)···1)···1 ····1 35.0	
881205	SKR110A50PAL-SL-PL (with IDP-PAL/PL for silicon grease)	(10-10kg)		851999 PD110A50T-SL		805143 IDP-PAL/PL Inductor plate…1 831384 Caster Base······1		
881209	SKR110A50PAL-SW (with detection sensor)			851728 PD110A50T		804941 Regulator Assy (Including 680743 PS-20PM Air Coupler)···1 802629 IDP-110 Inductor plate·····1		
881210	SKR110A50PAL-SL-SW (with detection sensor for silicon grease)			851999 PD110A50T-SL		831384 Caster Base 1 687043 Switch 1 687044 Bracket 1	34.0	

^{*}Pail empty detection sensor is available upon request

High Pressure Supply Pumps

Optional Accessory

Model No.	Model			
			A perforated metal plate is attached plate. This reduces the amount of pail as much as possible, allowing end. Suitable for grease with relations.	of material remaining within the g the material to be used to the
			When using standard inductor plates	●When using perforated metal plates
805016	IDP-PAL/PM Inductor plate (Punching metal type)			
			Heap of residual grease in the center of the pail	No grease remains in the center of the plate, and the grease is almost completely induced into the plate.
805143	IDP-PAL/PL Inductor plate (Double packing specification model)		The double-layered packing preverside of packings. The sealing processing specification models, reducing the and residual material remaining on Suitable for grease with relatively be	performance exceeds standard amount of air entering pail-cans the inner surface of containers.
805019	ST-PAL	3	The product serves as a refe installation locations, facilitating the on the pails.	

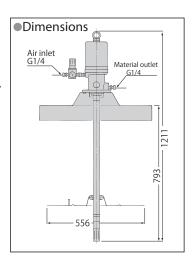
• High-pressure Hose for Grease (for SKR110A50PAL)

Model No.	Model	Length
695062	SKR-1.5M	1.5m
695050	SKR-2M	2.0m
695034	SKR-2.5M	2.5m
695049	SKR-3M	3m
695098	SKR-5M	5m
695335	SKR-7M	7m
695099	SKR-10M	10m

Detection sensor (Sold as a set of two)

Model No.	Model
687043	Switch
687044	Bracket

Inline High Pressure Supply Pump Unit 50×1 ratio


HPP110A50

110 series high performance Air-Powered® pump fitted with drum cover and follower plate. An airtight seal created by the follower plate helps with the delivery of material into the pump suction. Suitable for soft grease (NLGI No.0–1).

Material outlet: G1/4 (Union Adapter) Air inlet: G1/4 (Union Adapter)

Material

Piston Packing	Gland Packing
Polyurethane	Polyurethane

Specifications

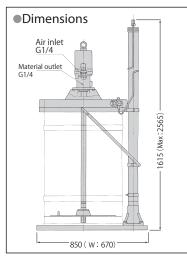
Madel Na	Model	Cantainas	Air Supply	Pump Spec		A	Weight
Model No.	Model	Container	Pressure (MPa)	Model	Ratio	Accessories	(kg)
880629	HPP110A50	Drum			50x1	800412 DC-110DR Drum Cover·······1 800413 FP-110H Follower Plate······1 802552 PAR-110 Air Regulator······1	11.0 (Pump Only)

Inline High Pressure Supply Pump Unit 50×1 ratio

HPP110A50AL

HPP110A50 fitted with pneumatic pump lift.

Replacement of the drum is easy.


Material outlet: G1/4 (Union Adapter) Air inlet: G1/4 (Union Adapter)

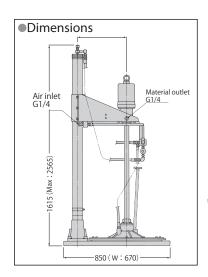
Material

Piston Packing	Gland Packing
Polyurethane	Polyurethane

Cassifications

Specifications							
Madal Na	Model	Cantainas	Air Supply	Pump Spec		A	Weight
Model No.	Model	Container	Pressure (MPa)	Model	Ratio	Accessories	(kg)
880630	HPP110A50AL	Drum		851783 DR110A50		800412 DC-110DR Drum Cover	11.0 (Pump Only)

High Pressure Supply Pumps

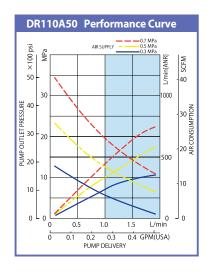

Inline High Pressure Supply Pump Unit 50×1 ratio

DR110A50AL

110 series high performance Air-Powered® pump fitted with inductor plate and pneumatic pump lift.

A strong airtight seal created by the inductor plate and the pump weight helps with the delivery of material into the pump suction. Suitable for normal grease (NLGI No.1–2).

Material outlet: G1/4 (Union Adapter) Air inlet: G1/4 (Union Adapter)



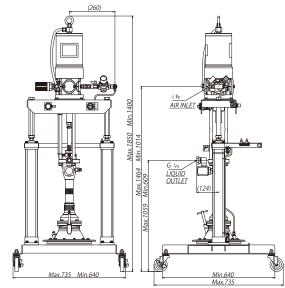
Material

Piston Packing	Gland Packing	Inductor Plate Wiper
Urethane	Polyurethane	NBR (Flat type)

Madal Na	Model	Cantainar	Air Supply	Pump Spec		A	Weight
Model No.	Model	Container	Pressure (MPa)	Model	Ratio	Accessories	(kg)
880628	DR110A50AL	Drum (180kg)		851783 DR110A50	50v1	801118 Air Lift 1802555 IDP-110AL Inductor Plate 1802556 BC-110AL Bracket 1800779 Lift Base 11	105.0

^{*}Drum empty detection sensor is available upon request.

Divorced High Pressure Supply Pump Unit 25x1, 38x1 and 50x1 Ratio

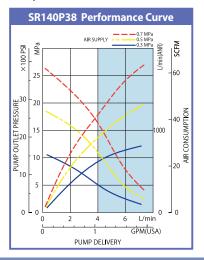

6 6 6 E

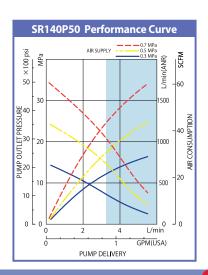
The Yamada's latest 140 series high performance Air-Powered® pump fitted with inductor plate and double post pneumatic ram pump lift. Very strong airtight seal created by the inductor plate and downward force by ram pump lift helps with the delivery of material into the pump suction.

Flat bottom inductor plate is equipped as a standard.

Material outlet: G1/4 (Union Adapter) Air inlet: G3/8 (Union Adapter)

Dimensions




Piston Packing	Gland Packing	Inductor Plate Wiper
Polyurethane	Polyurethane	NBR (Flat type)

Madal Na	Model	Container	Air Supply	Pump Spec		Accessics	Weight
woder No.	Model No. Model C		Pressure (MPa)	Model	Ratio	Accessories	(kg)
881107	SR140P25PWAL-F			854557 SR140P25-P	25x1		
881108	SR140P38PWAL-F	Pail (16-18kg)	0.2-0.7	854558 SR140P38-P	38x1	804819 Inductor Plate Assy······1 680743 PS-20PM Air Coupler···1	61.0
881109	SR140P50PWAL-F			854559 SR140P50-P	50x1		

^{*}Pail empty detection sensor is available upon request.

High Pressure Supply Pumps

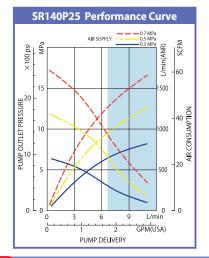
Divorced High Pressure Supply Pump Unit 25x1, 38x1 and 50x1 Ratio

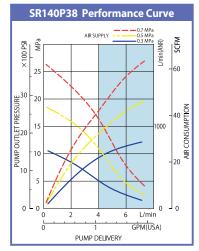
SR 140P 38 PWAL - T series

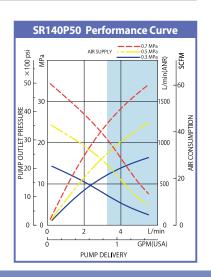
By means of the tube wiper fitted inductor plate, this is available to pump very high viscosity materials such as sealer and putty.

Material outlet: G1/4 (Union Adapter) Air inlet: G3/8 (Union Adapter)

• Dimensions (260) (260) (375) (3




Material

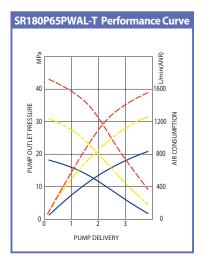

Piston Packing	Gland Packing	Inductor Plate Wiper		
Polyurethane	Polyurethane	NBR (Tube type)		

Model No.	lodel No. Model C		Air Supply Pump Spec		Accessories	Weight	
	Model	Container	Pressure (MPa)	Model	Ratio	71000001100	(kg)
881110	SR140P25PWAL-T			854557 SR140P25-P	25x1		
881111	SR140P38PWAL-T	Pail (16-18kg)	0.2-0.7	854558 SR140P38-P	38x1	804820 Inductor Plate Assy······1 680743 PS-20PM Air Coupler···1	63.0
881112	SR140P50PWAL-T			854559 SR140P50-P	50x1		

^{*}Pail empty detection sensor is available upon request.

SR180P65PWAL-T (Tube type inductor plate)

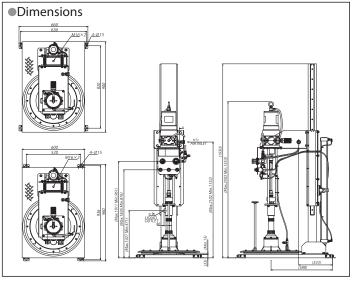
The pump unit is suitable for transferring materials with extremely high viscosity.

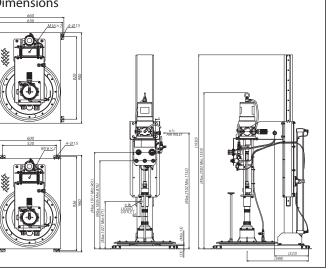

The high pump ratio allows for the achievement of high discharge pressure even with low pressured air supplies. To prevent the fixation of anaerobic materials such as sealants and putty, a solution container cup is attached to the gland section.

Product Overview
-T: Tube type inductor plate

Suitable for normal grease (NLGI No.1-3). The high sealing properties of the packings makes this model suitable for extremely high-viscosity materials requiring the pressurization of the lift.

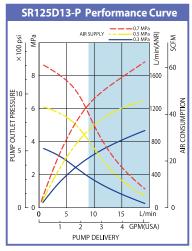
Madal Na	Model	Model Co.	Madel Centainer		Pump Spec		Accessories	Weight
Model No.		Container	Pressure (MPa)	Model	Ratio	Accessories	(kg)	
881160	SR180P65PWAL-T	Pail (16-18kg)	0.2-0.7	854863 SR180P65-P	65x1	804820 Inductor Plate Assy···1	65.0	


High Pressure Supply Pumps


Divorced High Pressure Supply Pump Unit 13x1 Ratio

SR125D13DAL

Material outlet: G3/4 (Union Adapter) Air inlet: Rc1/2 (Union Adapter)


Material

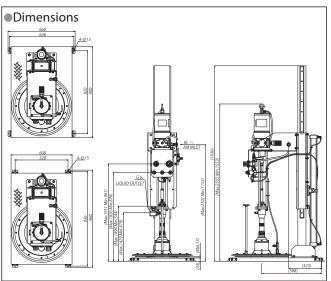
		Inductor Plate Wiper	
Special cowhide	Special cowhide	NBR (Flat type)	

Flat bottom inductor plate minimizes remaining amount of the grease.

Model No.	Model	Model Container		Pump Spec		Accessories	Weight
Wiodoi 140.	WIOGOI	Containor	Pressure (MPa)	Model	Ratio	710000001100	(kg)
881125	SR125D13DAL	Drum (180kg)	0.2-0.7	854664 SR125D13-P	13x1	854564 Drum Lift Assy······1 804823 Inductor Plate Assy·····1	173.0

^{*}Drum empty detection sensor is available upon request.

Divorced High Pressure Supply Pump Unit 25x1, 38x1 and 50x1 Ratio


SR 140P38DAL series

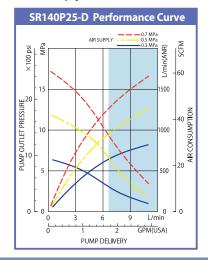
The Yamada's latest 140 series high performance Air-Powered® pump fitted with inductor plate and single post pneumatic ram pump lift.

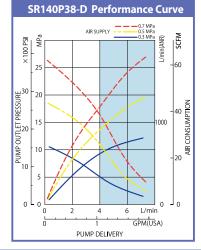
Very strong airtight seal created by the inductor plate and downward force by ram pump lift helps with the delivery of material into the pump suction.

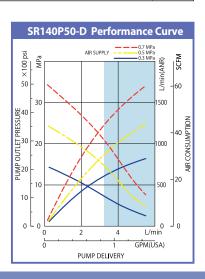
Flat bottom inductor plate is equipped as a standard.

Material outlet: G1/4 (Union Adapter) Air inlet: G3/8 (Union Adapter)

Flat bottom inductor plate minimizes remaining amount of the grease.


Material


Piston Packing	Gland Packing	Inductor Plate Wiper
Polyurethane	Polyurethane	NBR (Flat type)


pec	ific	atio	ns

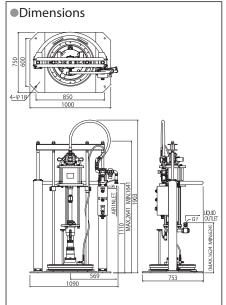
Model No.	Model	Container	Air Supply	Pump Spec		Accessories	Weight
WIOGEI IVO.	WIOGEI	Container	Pressure (MPa)	Model	Ratio	Accessories	(kg)
881113	SR140P25DAL			854560 SR140P25-D	25x1		
881114	SR140P38DAL	Pail (16-18kg)	0.2-0.7	854561 SR140P38-D	38x1	854564 Drum Lift Assy······1 804823 Inductor Plate Assy···1	173.0
881115	SR140P50DAL			854562 SR140P50-D	50x1		

^{*}Drum empty detection sensor is available upon request.

High Pressure Supply Pumps

Divorced High Pressure Supply Pump Unit 10x1, 20x1, 40x1, and 55x1 Ratio

SR250P2055DWAL

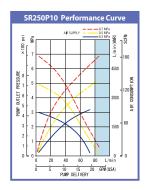


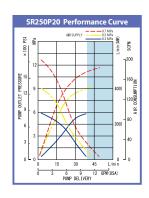
The Yamada's largest 250 series high performance Air-Powered® pump fitted with inductor plate and double post pneumatic ram pump lift.

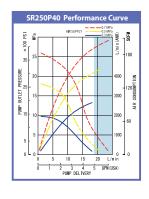
By the latest design, noise level have been reduced 10% compare with previous model.

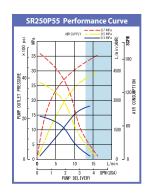
SR250P series is fitted with packing seal at the gland, and NBR flat type wiper at the inductor plate. It is suitable for grease. All model is equipped with drum empty detection sensor as a standard.

SR250P series is equipped with Flat Bottom Inductor Plate as a standard.




Material


	Piston Packing	Gland Packing	Inductor Plate Wiper
SR250P10	NBR	Polyurethane	NBR (Flat type)
SR250P20,40,55	Polyurethane	Polyurethane	NBR (Flat type)


Flat Bottom Inductor Plate minimizes remaining amount of the grease. (SR250P series only)

Media	Model No.	Model	Container	Air Supply	Pump Spec		Accessories	Weight
wedia	woder No.	Model	Container	Air Supply Pressure (MPa)	Model	Ratio	Accessories	(kg)
	881101	SR250P10DWAL			854298 SR250P10	10x1		265.0
Grease	881102	SR250P20DWAL	Drum	0007	854299 SR250P20	20x1	853871 Double Elevator Assy······1 800977 Air Release Vent Assy······1 804430 Inductor Plate Assy······1	260.0
Glease	881057	SR250P40DWAL	(180kg)	0.2-0.7	853869 SR250P40	40x1	804451 Swivel Joint Assy1 Low limit sensor DC12/24V; AC100/200V	255.0
	881058	SR250P55DWAL			853870 SR250P55	55x1	with duplex cable	255.0

Accessories (For high pressure supply pumps)

Pail empty detection sensor

687062 SR140-SW

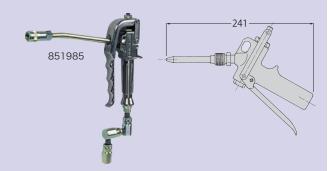
It can be mounted on air cylinders of the lift to send out external signals when the lift is at a desired height.

Oil cup

716900 Oil cup 682771 Valve 685775 O ring

(Sold as a set of three.)

When using high-viscosity materials such as adhesives, filling the cup with solutions prevents the material from oozing out of the plunger and fixing.



High Pressure Supply Pumps

Control Valves and Accessories (For high pressure supply pumps)

851985 HPG-G High Pressure Grease gun

Ideal for maintenance of various equipment and facilities, greasing up, and grease filling of products in production lines.

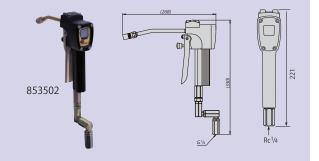
850K127 **KGK-127EF Flow Gun**

This pistol type flow gun is compact and lightweight and has a special device in the valve control (open/close) mechanism, which allows an operator to operate the lever with ease even under the high pressure.

Material inlet: Rc1/4

Normal operation pressure: 40MPa

The swivel joint available.



853502 **GMN-500 Digital Grease Gun**

The digital Grease Meter GMN-500 is equipped with an Over Gear weight meter and a digital display. It helps and improves lubricant management for all kinds of applications from heavy industry to assembly plants.

Specifications

Model No.: 853502 / Model: GMN-500 / Maximum operating proof pressure: 55MPa Maximum operating temperature: 60°C / Measurement accuracy: +/-3% / Weight: 0.98kg Power supply: Two AA batteries / Unit shown on LCD display while in operation: g and total kg Functions: Zero reset and calibration functions

Automatic Metering Valve: KGK-100 Series

The KGK-100 series-metering gun is accurate from 1MI to 20Ml and suitable for metering, dispensing or applying grease or adhesives. Once the volume has been preset, this unit with a simple pull of the trigger will dispense the required amount of material accurately and efficiently.

Material — Grease (Oil) Adhesive (only with the gun with PTFE packing) Metering range — 0 to 20mL (See next table for details)

For grease (NBR packing)

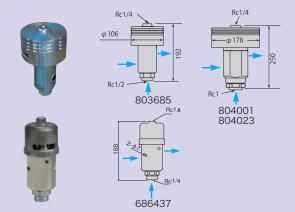
	•	J .	
Model No.	Model	Metering range (mL)	※A Dimensions (mm)
686427	KGK-112	0.3~1	255
686428	KGK-114	0.5~3	272
686429	KGK-115	1~5	290
686430	KGK-116	3~10	328
686431	KGK-117	5~20	398

For adhesive (PTFF packing)

O TOT GUITEST	- (: :: = pas	9,	
Model No.	Model	Metering range (mL)	※A Dimensions (mm)
686432	KGK-112T	0.3~1	241
686433	KGK-114T	0.5~3	255
686434	KGK-115T	1~5	275
686435	KGK-116T	3~10	298
686436	KGK-117T	5~20	347

Automatic Flow Valves

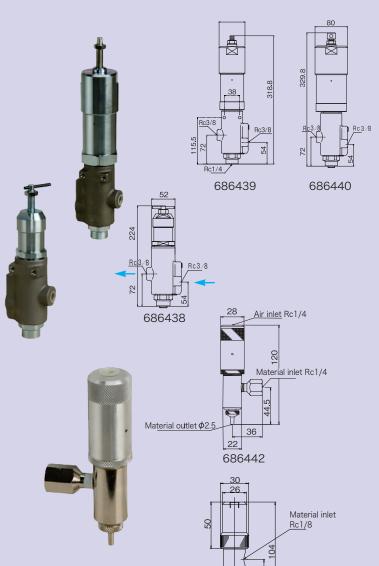
The valve in this automatic flow gun is controlled (open/close) by air pressure and the gun can easily be operated in synchronous with the production line.


803685 AF30M-15A Valve ratio 45x1 Material: Max pressure 30MPa, Port size Rc1/2 Air: Max pressure 0.7MPa, Port size Rc1/4

804001 AF20M-25A Valve ratio 30x1 Air: Max pressure 0.7MPa, Port size Rc1/4

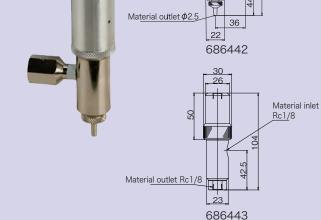
804023 AF20M-25AS (with sensor) Valve ratio 30x1 Material: Max pressure 20MPa, Port size Rc1 Material: Max pressure 20MPa, Port size Rc1 Air: Max pressure 0.7MPa, Port size Rc1/4 Sensor: DC12~24V with double wire (2m)

686437 KGK-02AFG


Material: Max pressure 20MPa, Port size Rc1/4 Air: Max pressure 0.7MPa, Port size Rc1/4

High pressure regulator

686438 KGK-106HR(1-6MPa) 686439 KGK-313HR(4-13MPa) 686440 KGK-820HR(8-20MPa)


Pressure regulator for heavy viscosity material. Max pressure:30MPa

Pneumatic discharge nozzle

686442 KGK-097AV Automatic nozzle 686443 AV-6162 Nozzle

It is used if discharge point is far from metering valve. Max pressure:20MPa

High Pressure Supply Pumps

Automatic Metering Valve: KGK-400 Series

The KGK series metering valves can discharge preset amount of grease or adhesive with single action by pneumatic 3-port valve.

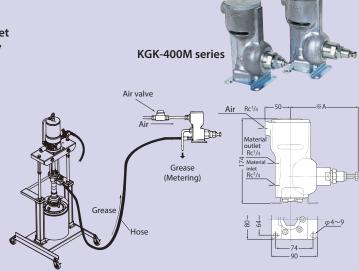
The material is extruded by a piston after being charged in the metering cylinder.

"MS" series, which is equipped with piston stroke sensors, can output signal of charge/discharge completions.

Silicon grease spec is also available.

- <Usable media> Grease (KGK-400M&MS series)Adhesive (KGK-400T series)
- <Metering range> 0 100mL

Working Principle


Pumped material is charged to the metering cylinder.

When the metering valve receives actuation air, the air piston opens the switching valve. The pumped material, reversely, pushes metering piston from behind, and material in the metering cylinder is discharged.

The metering range can be adjusted by stroke length of the metering piston.

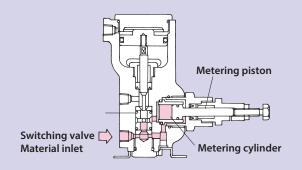
REMARKS

- √ Charging time is required between material discharges.
 √ Please consult Yamada for models with metering range more than 100ml.

For grease (NBR packing, Metal sealed)

Tor greas	e (Non packing, Meta	ai sealeu)	
Model No.	Model	Metering range (mL)	*A Dimensions (mm)
686405	KGK-401M	0.05~0.5	128
686406	KGK-402M	0.2~1	110 5
851056S	KGK-402M for Silicon Grease	0.2.01	118.5
686407	KGK-404M	0.3~3	133.5
851057S	KGK-404M for Silicon Grease	0.5 - 5	133.3
686408	KGK-405M	2~5	1545
851058S	KGK-405M for Silicon Grease	23	154.5
686409	KGK-406M	4- 10	404.5
851059S	KGK-406M for Silicon Grease	4~10	186.5
686410	KGK-407M		
851060S	KGK-407M for Silicon Grease	8~20	259.6
686411	KGK-408M	15~50	205.5
8510615	KGK-408M for Silicon Grease	15. ~50	285.5
686425	KGK-409M	40~100	

● For adhesive (PTFE packing, Metal sealed)

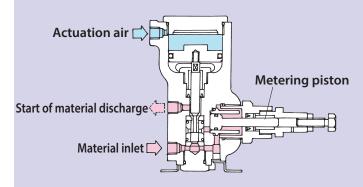

Model No.	Model	Metering range (mL)	※A Dimensions (mm)
686412	KGK-402T	0.2~1	104
686413	KGK-404T	0.3~3	118
686414	KGK-405T	2~5	118
686415	KGK-406T	4~10	163
686416	KGK-407T	8~20	212
686417	KGK-408T	15~50	261

For grease (NBR packing, Metal sealed) with limit switch

Tor greas	e (NBN packing, Meta	ai sealed) with in	IIIC SWITCH
Model No.	Model	Metering range (mL)	<pre>%A Dimensions (mm)</pre>
686418	KGK-401MS	0.05~0.5	176.5
686419*	KGK-402MS	0.2~1	125
850K214S*	KGK-402MS for Silicon Grease	0.2.01	135
686420*	KGK-404MS	0.3~3	170
850K215S	KGK-404MS for Silicon Grease	0.5 - 5	170
686421	KGK-405MS	2~5	106 5
850K143S	KGK-405MS for Silicon Grease	2, 5	196.5
686422	KGK-406MS	4- 10	
850K151S	KGK-406MS for Silicon Grease	4~10	215
686423	KGK-407MS		
850K222S	KGK-407MS for Silicon Grease	8~20	259
686424	KGK-408MS	15~50	226
850K221S	KGK-408MS for Silicon Grease	15. 900	326
686426	KGK-409MS	40~100	
850K223S	KGK-409MS for Silicon Grease	40 - 100	

^{*}The sensor (limit switch) on the models 686419,686420 and 850K214S is OMRON's E2CX2A. As for the amplifier unit for these models, please use E2C-AK4A (which is an optional part.) The sensor on the other models is OMRON's Z-15GW22B.

Principle of Operation


Actuation air Air piston Metering piston Start of material discharge Switching valve Material inlet

Standby mode

Material is forced into the metering valve and due to pressure the outlet is closed and the metering cylinder is filled with material. Due to material pressure the metering piston is always being pushed forward. (To the left in the above figure.)

Start of discharge

Once the air switch is triggered and air enters the meter, the air piston is pushed down, the material inlet port is closed and the material discharge port in opened. The piston then moves (to the left in diagram) and discharges the material contained in the metering cylinder.

Exhaust Metering piston Switching valve Material inlet Metering cylinder

Completion of discharge

The metering piston completes its stroke and the entire amount of material is discharged.

Return to standby

Once all air has been exhausted, the material discharge valve is closed and material moves into and totally fills the metering cylinder pushing the piston back to the original position.

Memo

REQUEST SHEET

YAMADA CORPORATION E-mail: intl@yamadacorp.co.jp

you already us ve you dealt o	any details as poss ax to Yamada Corp sing Yamada produ directly with Yama Irn about Yamada (ible. oration and we wil cts? ada Corporation i	ll get straig	ght back to you. (YES•NO) st ?(YES•NO)	Purpose of the Request for teen Request for quest for mean Request for mean Request for case Request for loen Other.	echnical information. Inchase propore informations of the information	ducts. ation. of flyers.
Address (w	ith Postcode):						
Phone:()		Fax:	()			
Department/S	Section/Group:		Na	ame			
	To: YAMAE	DA CORPORA	ATION, I	nternational De _l	partment		
Please provi	de a sketch of you	r system including	as many	details as possible			
1) Potentia	l product: Model			Diameter A			
 Potential Objective 				Diameter A			
2) Objective				Diameter A			
2) Objective	es: ations of fluid:	Fluid propertie	es	Diameter A Concentration	%		
2) Objective 3) Specifica Name	es: ations of fluid:	Fluid propertic	es cp		% °C		
2) Objective 3) Specification Name Specification	es: ations of fluid:	Viscosity		Concentration		neter	mm
2) Objective 3) Specifica Name Spec Slurry	es: ations of fluid: e ific gravity	Viscosity es / □ No		Concentration Temperature	°C		
2) Objective 3) Specifica Name Spec Slurry	es: ations of fluid: e iffic gravity y included? Ye utput (Flow rate) N	Viscosity es / □ No	ср	Concentration Temperature →Concentration	°C Wt% Dian		
2) Objective 3) Specifica Name Spec Slurry 4) Pump ou Total s	es: ations of fluid: e iffic gravity y included? Ye utput (Flow rate) N	Viscosity es / □ No	ср	Concentration Temperature →Concentration /hr Max. rate	°C Wt% Dian		
2) Objective 3) Specifica Name Spec Slurry 4) Pump ou Total s	es: ations of fluid: e iffic gravity y included?	Viscosity es / □ No	cp /min	Concentration Temperature →Concentration /hr Max. rate M MPa	°C Wt% Dian		
2) Objective 3) Specifica Name Spec Slurry 4) Pump ou Total s' Ambier	es: ations of fluid: e iffic gravity y included?	Viscosity s / □ No ominal rate	cp /min	Concentration Temperature →Concentration /hr Max. rate M MPa	℃ Wt% Dian /mir		
2) Objective 3) Specification Name Specification Slurry 4) Pump out Total standard Ambier 5) Fluid core	es: ations of fluid: e iffic gravity y included?	Viscosity S /	cp /min	Concentration Temperature →Concentration /hr Max. rate M MPa	℃ Wt% Dian /mir		
2) Objective 3) Specifica Name Spec Slurry 4) Pump ou Total s' Ambier 5) Fluid cor 6) Operation	es: etions of fluid: e etific gravity y included? Ye utput (Flow rate) N troke ht temperature htainer: 200L C Custon n conditions: Our	Viscosity as / □ No ominal rate Drum container □ n container: Specifitdoor/□ Indoor	cp /min 20L Pail fications	Concentration Temperature →Concentration /hr Max. rate M MPa	°C Wt% Dian /mir square container	1	/h
2) Objective 3) Specifica Name Spec Slurry 4) Pump ou Total s: Ambier 5) Fluid cor 6) Operation Operation	es: etions of fluid: e etific gravity y included? Ye utput (Flow rate) N troke ht temperature htainer: 200L C Custon n conditions: Our	Viscosity as / □ No ominal rate Drum container □ n container: Specifitdoor/□ Indoor	cp /min 20L Pail fications	Concentration Temperature →Concentration /hr Max. rate M MPa I container □ 18L s	°C Wt% Dian /mir square container	1	/h
2) Objective 3) Specifica Name Spec Slurry 4) Pump ou Total s: Ambier 5) Fluid cor 6) Operation Operation	es: ations of fluid: e iffic gravity y included?	Viscosity S	cp /min 20L Pail fications	Concentration Temperature →Concentration /hr Max. rate M MPa I container □ 18L s	°C Wt% Dian /mir square container	1	/h
2) Objective 3) Specifica Name Spec Slurry 4) Pump ou Total s' Ambier 5) Fluid cor 6) Operation Operation 7) Air suppl 8) Number	es: ations of fluid: e iffic gravity y included?	Viscosity Is / No Ominal rate Drum container In container: Specifitdoor / Indoor iten do you run your MPa unit(s)	cp /min 20L Pail fications	Concentration Temperature →Concentration /hr Max. rate M MPa I container □ 18L s	°C Wt% Dian /mir square container	1	/h

Yamada offers a large range of Air Operated Pumps to cater for many different kinds of materials and conditions. When selecting the most appr opriatepump for a particular selection and installation please consult your local Yamada Pump Distributor or Yamada Corporation.

Your Local Distributor:

All product specifications and data are subject to change without notice.

Revised: Jul. 2022

YAMADA CORPORATION

International Sales Department

No.1-3, 1-Chome, Minami-Magome, Ohta-ku,Tokyo 143-8504, Japan

Phone +81-(0)3-3777-0241

Fax +81-(0)3-3777-0584

E-mail: intl@yamadacorp.co.jp Web: https://ap.yamadacorp.co.jp/